A team of scientists using the Dark Energy Camera (DECam), the primary observing tool of the Dark Energy Survey, was among the first to observe the fiery aftermath of a recently detected burst of gravitational waves, recording images of the first confirmed explosion from two colliding neutron stars ever seen by astronomers.

Images taken with DECam captured the flaring-up and fading over time of a kilonova — an explosion similar to a supernova, but on a smaller scale — that occurs when collapsed stars (called neutron stars) crash into each other, creating heavy radioactive elements.

This particular violent merger, which occurred 130 million years ago in a galaxy near our own (NGC 4993), is the source of the gravitational waves detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo collaborations on Aug. 17. This is the fifth source of gravitational waves to be detected.

This latest event is the first detection of gravitational waves caused by two neutron stars colliding and thus the first one to have a visible source. The previous gravitational wave detections were traced to binary black holes, which cannot be seen through telescopes. This neutron star collision occurred relatively close to home, so within a few hours of receiving the notice from LIGO/Virgo, scientists were able to point telescopes in the direction of the event and get a clear picture of the light.

#gravitationalwaves #science #physics #space #LIGO #DECam #DarkEnergySurvey #astrophysics #kilonova

462 likes  10 comments

Share Share Share


Fermi National Accelerator LabFermi National Accelerator Lab